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Abstract. Quasi-crystalline structures are related to periodic distributions of A3,, volumes 
in a higher-dimensional space. If these A3,, volumes are actually confined inside the 
complementary space, three-dimensional Penrose lattice can be generated by the six-dimen- 
sional cut method. Diffraction data show that the actual A3,, must have components in the 
physical space, which make the three-dimensional structure description in terms of Penrose 
tiling not really reliable. Such ‘parallel’ components have been experimentally observed for 
the first time. 

1. Introduction 

Long-range ordered structure results not necessarily from periodic space tiling [ 11 and 
the notion of quasi-crystal, or quasi-periodic crystal, has been introduced to describe 
substances [2] that have a sharply peaked diffraction pattern and yet without any 
evidence for periodicity. 

For periodic crystals, the structure is completely specified when both the unit cell (or 
the Bravais lattice) and the positions of atoms in this unit cell have been determined. 
The so-called direct methods of crystallography are the usual way to extract this structural 
information from diffraction data. 

Basically, quasi-crystals must be treated the same way; position (indexing) of the 
diffraction peaks are related to the geometrical characteristics of the quasi-periodic 
framework while distribution of the scattered intensity should reveal where the atoms 
are located. The first step, i.e. the successful description of the quasi-periodic lattice, 
has been achieved with use of a variety of different schemes for generating them 
[l]: space tiling by two rhombohedral cells with matching rules, inflation-defiation 
procedure, multi-grid or dual methods, strip-projection [3] or cut-projection approaches 
[4]. The latter, in particular, drives quasi-crystals back to crystallography by showing that 
any three-dimensional quasi-periodic lattice has actually hidden translation invariances 
which can be recovered if the structure is properly described in a higher-dimensional 
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space. For instance, the archetypical icosahedral quasi-crystals with m35 point group 
symmetries cannot be periodic in three dimensions but there are three possible six- 
dimensional icosahedral periodic arrangements, i.e. the primitive (P) , face-centred (F) 
and body-centred (I) cubic Bravais lattices. Each of them corresponds to well defined 
indexing (positions and extinction rules) of the diffraction peaks [5] .  The second step, 
i.e. saying where the atoms are, is intrinsically more difficult for a quasi-crystal than for 
a crystal. A perfect quasi-periodic structure, without any disorder, still has an infinite 
number of sites in three dimensions which are not exactly equivalent. There are also 
practical difficulties to be overcome, related to the fairly low level of information that 
can be extracted from diffraction patterns of quasi-crystals. The diffraction pattern of a 
quasi-crystal, due to non-periodic long-range order, is singularly continuous (very dense 
set of Bragg-like reflections). In a typical powder diffraction experiment about 30- 
60 independent reflections only are actually measured. Thus, quite a large part of 
information is smeared out into the background. One way to recover this information 
partly is to use the so-called direct space method (DSM) [6]. In the DSM, currently 
employed for deciphering structural problems in non-crystalline materials, pair dis- 
tribution functions (PDFS) and, possibly, partial pair distribution functions (PPDFS) can 
be obtained. In this approach, diffraction patterns are measured over a large Q-range 
and a continuous Fourier transform (FT) of the whole (normalised) scattering signal 
gives the averaged, isotropically regrouped probability of atomic pairs as a function 
of pair distances. Contrast variation with neutron diffraction allows the PPDF to be 
determined from convenient data sets. The negative point of such a procedure is that 
angular information is obviously lost, but the whole (diffuse) signal between the strong 
peaks is reintroduced into the FT and thus contributes to the PDF and/or PPDF. The 
method has been shown to be fairly reliable for investigating short- and medium-range 
order not only in liquids or amorphous materials but also, more recently, in ordered 
structures [6,7]. Thus, quasi-crystallography and the DSM must be used jointly if one is 
to expect the best from the diffraction approach to quasi-crystal structures. The many 
intricacies of the direct methods have been very often bypassed or at least complemented 
by modelling approaches [8-121 as extensively reviewed elsewhere [13,14]. 

The purpose of this paper is to reanalyse and complement neutron diffraction data, 
measured with an A174Si5Mn21 quasi-crystal, and to demonstrate that, while the average 
structure can be described in terms of decorated three-dimensional Penrose lattices, 
important details of this structure depart significantly from this scheme. After a summary 
of what quasi-crystallography is and a brief report on the direct treatment of diffraction 
data, it will be shown how experimental constraintsrequest a certain extent of modelling, 
implying generalised atomic volumes, in the six-dimensional related structure, which 
are not entirely contained in the complementary (or perpendicular) space. 

2. The six-dimensional cut scheme 

The best way to analyse the relation between diffraction data and the structure of a 
quasi-crystal is probably to work out the problem within the so-called cut method. 

In the cut method, an icosahedral quasi-periodic arrangement of atoms in the three- 
dimensional physical space R3,,, corresponds to a periodic arrangement of three-dimen- 
sional hypersurfaces, or atomic shells A3,,,, in six-dimensional space R6. These atomic 
shells intersect the three-dimensional real-world hyperplane at the atom positions. For 
physically obvious reasons, the A3,,,, cannot intersect each other and they have to be 
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invariant under the operations of the point group symmetry (120 in the case of m%); 
they do not have to be hyperplanes. For each type (or family) of atomic sites in three 
dimensions there is one A3,,, shell whose relative volume is directly related to the 
corresponding relative atomic three-dimensional density. In an idealistic monatomic 
icosahedral quasi-crystal, with a single site at the origin of the six-dimensional structure, 
and triacontahedral A3,,, entirely contained in the R3,,,, space complementary to R3,,, 
in R6, the three-dimensional atomic density is a distribution of Dirac functions at the 
vertex positions of a three-dimensional Penrose tiling (3DFT). The volume of A3,,,, is 
equal to n3a6 in which a is the six-dimensional lattice parameter and n3 the three- 
dimensional atomic density. Correspondence rules also exist between the reciprocal 
spaces R6*, R3:a, and R3:e,,, respectively. These reciprocal spaces contain the FE of 
the densities and it is easy to demonstrate that the FT F(Q,,,) in R3;a, is the projection 
onto this very reciprocal subspace of the FT F(Q6)  in RZ ; F(Q6)  in turn is a distribution 
of 6 functions modulated by G(Qpev), the FT of A3,,,, (epar and Qperp are the projections 
of Q6 onto R3:,, and R3:,,, respectively). Such a correspondence scheme is illustrated 
in figure 1, using a two-dimensional + one-dimensional simplification. The high-dimen- 
sional periodic structure is here a two-dimensional simple square lattice and the physical 
(parallel) space has been chosen for cut generating a one-dimensional quasi-crystal as 
a so-called Fibonacci chain (two tiles, of long and short distances, L and S, respectively, 
in a sequence LSLSLLSLLSLSL. . . resulting from the building rules L + LS and 
S-, L ;  in the present example LIS = z, the golden mean). A Fibonacci chain is the 
exact one-dimensional equivalent of a ~ D F T .  

The points of interest for an experimental approach to the quasi-crystal structures 
may then be summarised as follows. 

(i) There is a one-to-one correspondence between and Qpar which generates a six- 
integer indexing of the diffraction peaks measured at Qpar in R3;,, and allows us to 
determine the six-dimensional Bravais lattice from diffraction data. 

(ii) Intensities I F(QPar) I measured at Qpar in diffraction data are also the intensities 
I F(Q6)  1 that would correspond to a 'six-dimensional diffraction experiment'. 

(iii) The diffraction pattern in R3;,, is a very dense set of peaks whose intensity is a 
decreasing function of Qpe, due to the shape factor effect of A3,,,, (see figure 1). 

(iv) The direct FT of these measured F(&) ,  or at least of I F(Q6)  I 2 ,  gives the six- 
dimensional structure (site positions and A3,,,, function), or at least the corresponding 
six-dimensional Patterson functions. 

(v) The three-dimensional cut of this six-dimensional structure by R3,,, results in 
physical atom positions. 

3. Application to the interpretation of diffraction data with an AlSi-Mn quasi-crystal 

Al-Si-Mn alloys are not monatomic nor single-sited systems. The immediate unavoid- 
able complication with respect to the simple scheme as described in section 2 is that the 
F(Q,,,) and F(&) structure factors contain several contributions such as 

F(Q6 = - et") E b,G,(Qperp> exP(i2nQ.5 ' rw) 
n 

a being indicative of the atomic sites at position r, in the six-dimensional space; b, are 
the scattering lengths of atoms sited at r, and G, the FT of the pertinent volume A3,,,,( a) 
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Figure 1. Illustration of the high-dimensional crystallography methods. Integratedintensities 
of the strong peaks are obtained from diffraction data. (c) They give at least amplitudes of 
the structure factors and two-integer indexing; (b )  this two-integer indexing allows the high- 
dimensional diffraction pattern to be reconstructed; (a) Fourier transform of this pattern 
gives the high dimensional periodic structure which, when cut by our physical space, 
determines atom positions. 

attached to each site. The FT of these F ( Q 6 )  gives correctly the lattice points in six 
dimensions but only combinations of the dephased A3perp(~)  atomic shells. This com- 
plication can be somewhat overcome by using contrast variation techniques in neutron 
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Figure 2. The amplitude of the partial structure factor lFTi for the transition-metal atoms 
depends on Qpe, as I G(Q,,) I due to the one-site (origin) structure of the T sublattice in six 
dimensions. G(Q,,) is an oscillating shape factor and goes from positive to negative 
values when passing through zero. Thus, (a )  IFT(Q,,)I can be turned into ( b )  FT(QpeT) 
straightforwardly. The experimentally measured phase differences between FT and FA, 
(equal to zero or n) then gives ( c )  FAl(Q,,). 

diffraction. Basically, isotopic or isomorphous substitutions allow us to vary the weight of 
one, or several, atomic species into the scattered signal. By measuring several diffraction 
patterns weighted differently, it is possible to calculate what would be the diffraction 
patterns if each atomic species were alone, i.e. the so-calledpartial structure factor. The 
problem can then be treated as the superposition of several monatomic structures. 

As previously reported [ 15-18], it is possible to obtain icosahedral quasi-crystals 
A174Si5Mn21 and their modifications resulting from a-FeCr substitution into Mn. Their 
neutron diffraction patterns can be indexed with six integers related to a six-dimensional 
icosahedral primitive lattice with a parameter a = 6.5 A. The peak intensities can be 
written 

Z(Qpar) = I ~ A I F A I  + ~ T F T  I 
where the b-values are the neutron scattering lengths of A1 + Si and transition-metal 
atoms, respectively; the F-values are the partial structure factors. In the experiment, bAl 
is aconstant while bT can be varied from -0.373 X 10-12to +0.658 X lo-'* cm. From at 
least three sets of diffr_action data corresponding to samples with different bT-values, 
1 FA] 1 , I  FT 1 and c0s(FAI, FT) (= 2 1) in the present case) have been determined for every 
measured diffraction peak [15,16]. 

The partial Patterson function in six dimensions calculated for the T atoms by direct 
FT of I FTI shows unambiguously that there is only one T site, at the origin of the six- 
dimensional cubic lattice. Thus the lattice contribution to the &dependence of the FT 

phases is a constant, as for any partial structure factor of periodic arrangements of lattice 
sites. The consequence is that FT is related to Q6 through the Qperp-dependence of 
GT(Q,,,) only. This GT(Q,,,,) is the FT of a spatially finite volume A3,,,,(T) and, as 
such, is some sort of damped oscillating function. It is then possible to say that there are 
sign changes for FT(Q e,) at the e,,,-values which correspond to the experimentally 
determined I F,(Q,,,)requal to zero [ 15, 161, as illustrated in figure 2. The phases of FT, 
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Figure 3. Density profiles of the T (origin), AI, 
(origin) and AIBc (body centre) A3,,,, volumes 
as deduced from neutron diffraction data. The 
profiles are scanned along a twofold axis in the 
complementary (perp) space. 

equal to 0 or JC, are thus reconstructed and the phases of FA] follow from the measured 
values of c o s ( m )  = +1, as also illustrated in figure 2. 

Now, the direct FT of FT and FAI in six dimensions gives the partial distribution 
of atomic sites convoluted by the pertinent atomic shells A3,,,,(T) and A3pe1p(A1), 
respectively. This six-dimensional structure is quite simple [ 15, 161. As already seen in 
the partial Patterson function, there is only one site associated with the T atoms, at the 
origin of the six-dimensional cube, and two sites associated with the A1 atoms, one also 
at the origin of the six-dimensional cube and the other at the body centre positions. The 
A3,,, volumes have roughly spherical symmetries in R3,,,,. Their density profiles, 
shown in figure 3, give their sizes and shapes; they do not have sharp borders that would 
correspond to constant density inside and zero outside but exhibit rather smeared limits. 
The A3,,,(A10) has even an almost empty core which makes it shell shaped (figure 4). 
The six-dimensional structure may be visualised with a two-dimensional map of the sort 
shown also in figure 4. Thus the six-dimensional structure as deduced from neutron 
diffraction data can be considered as perfectly specified. The next step, in principle, is 
to generate atom positions in three dimensions by a pertinent physical cut of this six- 
dimensional structure. There is actually no basic difficulty in getting a list of atom 
coordinates [15,16] but we are left with the problem of how to describe properly the 
three-dimensional structure. As the A3,,,,(T) volume attached to the transition-metal 
sites is not too different from the triacontahedron that would generate the vertices of a 
~ D F T ,  the simplest idea was an attempt to specify this three-dimensional structure with 
respect to an underlying ~ D P T  [ 15,161, Transition-metal sites have then been located at 
the vertices, and A1 sites on the long diagonals of the rhombohedron faces (both prolate 
and oblate) and along the triad axis of the prolate rhombohedra (see [15,16] for details) 
but, owing to the actual shape and/or low-density parts of the experimental A3,,,, 
volumes, the six-dimensional structure cannot induce a single perfectly defined dec- 
oration of the ~ D P T  rhombohedra. The resulting three-dimensional arrangement is only 
an averagestructure which, indeed, can be used as such for physical studies. The atomic 
sites as reported here are more than often partially occupied only. It is noteworthy that 
there is no mid-edge A1 sites, contrary to what was formerly suggested in models based 
on Mackay icosahedron (MI) clusters [19] since the inner small A1 icosahedron is not 
found and replaced by a half-occupied pentagonal dodecahedron. Fragments of filled 
A1-Mn small icosahedra are also found and the outer shells (large Mn icosahedron and 
large A1 icosadodecahedron) of the MI are still observed. Unphysical short atomic pair 
distances are also generated, which suggests that spurious details of the experimental 
A3,,,, volumes have to be corrected for. 
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Figure 4. (a) Two-dimensional map of the six-dimensional density as obtained from the FT 
of the experimentally obtained partial structure factor. The map contains one twofold axis 
in R3,,, and another twofold axis in R3,,,,; the density features are restricted to those 
corresponding to A3,,(A10). (b)  Density profile. ( c )  Equal-density contours for the same 
A3,,(AI,). 

Further refinements are indeed possible, but several points must be advocated 
carefully if more elaborate conclusions have to be proposed confidently. 

4. From experimental limitation to necessary modelling 

In classical crystallography, the usual procedure to derive a structure is first to infer a 
‘raw’ specification of atomic sites from diffraction data (both positions and intensity of 
the Bragg peaks) and then to refine atom positions; the ‘raw structure’ is back Fourier 
transformed into reciprocal space and the atom coordinates are adjusted for this FT to 
reproduce the diffraction data in the best way. Such a procedure offers the advantages 
of bypassing parasitic effects such as truncation in Q-space, background problems, phase 
undetermination and Bragg peak degeneracies. The number of fitted parameters is of 
course reduced to the three coordinates per atom in the unit cell plus possible Debye- 
Waller factors to account for temperature and/or disorder effects. Transposition of 
the method to quasi-crystallography is easy in principle but actually far from being 
achievable. Direct refinement of the quasi-periodic three-dimensional structure, as 
described in section 3, is not possible because refining an ‘average structure’ is just 
nonsense. Moreover, Fourier transformation of an infinite complicated quasi-periodic 



2506 M de Boissieu et a1 

Figure 5. Illustration of the QpeV truncation 
effects. The density profile in R3,, of a spherical 
A3,,, function (---) is compared with profiles 
calculated by FE of the G(Q,,,,)-function when 
cut at Qpe, = 1 (-) and QpcV = 3 (. .. . .). Rip- 

4 io ,; ples, depressions and border smearing are 
observed. 

I 
-15 -10 -5 0 

rprp (AI  

structure is not that straightforward. Refinement of the periodic six-dimensional descrip- 
tion would indeed involve only the finite number of A3,,,, volumes contained in the six- 
dimensional unit cell and the corresponding attempt would look like classical crys- 
tallography, but for trivial dimensionality differences. Unfortunately, it is not that 
simple. The three-dimensional physical structure depends on size and shape of the A3,,, 
volumes. If sizes can be fairly well obtained from diffraction data, shape details would 
need much more than the available information to be characterised properly. For 
instance, the A3,,, experimentally obtained as explained in section 3 exhibit smeared 
spherical profiles, but it is not possible to state that this smearing is a true intrinsic 
feature because it may also come from truncation in e,,,-space as explained elsewhere 
[15, 16,201 and schematically summarised in figure 5 .  Thus, it would be unphysical to 
try a refinement procedure with many adjustable parameters that would hopefully 
describe the A3,,, volumes! Moreover, even their overall spherical symmetry and their 
distribution on origin and body-centred sites must be actually questioned, as possibly 
resulting from measurement of the diffraction data on powder sample and not on 
single grain. Different QPaf-vectors (or Q6-vectors) attached to non-equivalent Bragg 
reflections (with different intensities therefore) may contribute to powder diffraction 
peaks having the same modulus-Q-value. Without further assumption or experimental 
evidence, the total intensity of such a global peak can only be artificially shared uniformly 
between the contributing non-equivalent reflections, thus forcing isotropy of the struc- 
ture. Fortunately, the reality does not seem to be that bad, as suggested by considering 
the experimental e,,,-dependences of FT and FAI (figure 2) after limitation of the 
analysis to non-degenerated (simple) peaks. This is shown in figure 6. Obviously, the 
smooth regular behaviour still shows up and in particular FT(Qpe,) is still very similar to 
the IT of a sphere. Then, positions, sizes and rough shapes of the A3,,,, volumes may 
be considered as globally correctly determined. They can be slightly modified by only 
small (or very small) additions or holes that must have no influence on the simple 
diffraction peaks. To quantify the point, let us consider a sort of counter-example in 
which the six-dimensional cube (a  = 6.5 A) would have an empty shell ( R  = 6.2-10.3 A) 
at the origin and six filled spheres ( R  = 5.2 A) on mid-edge positions. As shown in figure 
7 the corresponding F(Qperp) behaviour cannot be described by a smooth regular curve 
any longer. By trial and errors of this sort, it can be concluded that any A3,,, reshaping 
or further modelling will keep at least 85% of the experimentally determined structure 
as described in the previous section and in [U, 161. Finally, it must be also mentioned 
that the experimentally determined density in the six-dimensional structure is somewhat 
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Figure 6. e,,-dependence of (a )  FT and (b )  FA, when the data are restricted to non- 
degenerated diffraction peaks. 

noisy (figure 8) and a background cut-off has to be defined before cutting the structure 
by the three-dimensional physical space; the choice of this cut-off level is not as irrelevant 
as it should be concerning the final three-dimensional physical structure. 

Thus, if a complete physical structure of the quasi-crystal is to be specified, modelling 
is not totally unavoidable [ll, 151. The simplest thing to do is to keep spherical A3,,, 
volumes. This has the minor and undercontrolled disadvantage of generating unphysical 
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Figure 8. A perspective view of a two-dimensional density map of the six-dimensional partial 
substructurecorresponding to the (origin) manganese A3,,,,volumes. The density is scanned 
in a plan containing one twofold axis in the physical space and one twofold axis in the 
complementary space. A significant background shows up in between the strong density 
features. 

short pair distances in three dimensions as already stated. On the other hand the FT is, 
to the first order, more sensitive to volume than to shape. For instance, a sphere and a 
triacontahedron, with the same volumes, have almost indistinguishable FTS and, of 
course, t h e m  of a sphere is far more easily achieved! Initially, in the absence of evidence 
otherwise, these spheres are going to have sharp borders (constant density inside, and 
zero outside) and volumes equal to those of the experimental A3,,,,. Thus the six- 
dimensional cube is going to be decorated as follows: 

(i) A3,,,,(T): sphere at the origin with a radius of 6.18A and a full occupancy 
(constant density inside the sphere normalised to unity) ; 

(ii) A3perp(A10): also at the origin but is an empty spherical shell surrounding 
A3 (T) exactly; the radii are 6.18 and 10.3 A and the occu ancy is also equal to unity; 

P"P (111) A3,,,,(AlBc): at the body centre with radius of 5.6 

The corresponding structure in three-dimensions has a density of 3.62 g and a 
composition Al(o),l,,A1(BC)8,9T19,7 in consistency with the alloy's actual characteristics. 

The next step is to calculate integrated intensities of the diffraction peaks predicted 
by this six-dimensional structure and to compare with the observed values of the whole 
set of neutron diffraction patterns. A refinement procedure is used with the following 
seven parameters: a scaling factor and two Debye-Waller factors DW,~, and DW,,:~ for 
each of the three atomic sites. The D W ? ~ ,  are classical Debye-Waller factors, associated 
with (thermal, chemical and topological) disorder in the physical three-dimensional 
space, and related here to possible displacements or deformation of the A3,,,, volumes, 
with components completely contained inside R3,,, (physical space). The D W ~ ~ ~ ~ ,  con- 
trarily, are due to possible displacements of the A3,,,, into the complementary R3,,,, 
three-dimensional space [21]. This is the so-called phason disorder [22] which has been 

1 and 0.58 occupancy. 
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observed in high-resolution electron microscopy images [23] and gives some under- 
standing for the experimental broadening of the diffraction peaks. Such a phason 
disorder may correspond to ‘vacancies’, ‘extra atoms’ or collective tile flippings in 
the three-dimensional space, with respect to the idealistic structure. Recovering the 
‘relaxed’ perfect structure would request long-distance diffusive processes. As this is 
unrealistic, phason disorders are considered as ‘frozen’. Within isotropy assumptions, 
these DW,,,, can be written as exp( -BperpQ~erp) ,  in analogy to the usual phonon term 
[21]. This is equivalent to saying that the initial idealistic spherical A3,,,, must be 
convoluted with a Gaussian profile in the direct perp space [22]. 

The D W , ~ ~  are found to be very large for the two A1 sites and correspond to mean 
square displacements of the order of 0.1 8, which certainly includes a contribution from 
static disorders. The phason D W , , ~  is tremendously large for the AIBcsite and is the factor 
which influences mostly the fit quality. Its value corresponds to average displacements of 
A3,,,(Al~c) in the complementary three-dimensional space equal to about 2.3 A. These 
displacements are only of the order of 0.7 8, for the two A3,,,(T) and A3perp(A10) sited 
at the origin of the six-dimensional cube. In all cases, this is perfectly compatible with 
the smeared nature of the A3,,,, sphere borders, as directly deduced from data [15,16]. 

The weak point of such a model is its relatively poor ability to reproduce the measured 
integrated intensities of the Bragg peaks [24,25]. This is illustrated in figure 9 where 
calculated intensities are compared with the measured intensities for the two extreme 
values of the used neutron contrast [15, 161. Mismatching of model to data is also quite 
visible when comparing the PPDF [26] as shown in figure 10. It should be noted that any 
attempted models using spherical or not spherical A3,,,, volumes, with a variety of the 
permitted slight modifications [ll, 121, have so far reached a comparable degree of 
unsuccessfullness when compared with neutron diffraction data. Thus a fundamentally 
different ingredient seems to be necessary if improvements are to be expected. The 
definition of this new ingredient will be the purpose of the next section. 

5. Generalised A3,,,, volumes: the parallel component 

In the model and the average structure described in sections 3 and 4, the nearest- 
neighbour Al-A1 distance has in fact two main components: one at 2.59 8, comes from 
two Al, sites on a threefold axis, and the other at 2.99 A also from two Al, sites but on 
a twofold axis; a third minor component at 2.85 8, is an Al,-AlBc pair (figure ll(a)). 
The A1-A1 distribution as obtained from the DSM is more compact and centred on 2.82 8, 
(figure 10). Thus the actual structure seems to depart from the ideal average structure, 
the A1-A1 shortest distances being expanded along threefold axes and contracted along 
twofold axes. This expansion-contraction modification is of the order of 0.2 A. A similar 
trend is also visible on the Al-Mn PPDF which shows a drastic increase in the threefold 
axis pairs (2.59 A) to the disadvantage of the twofold axis pairs (2.99 A) (figure 10). The 
Mn-Mn pairs are less accurately determined and huge truncation oscillations have 
unfortunate screening consequences. However, a perfect Mn Penrose sublattice would 
give fivefold pairs at 4.6 (edges of the rhombohedra) and twofold pairs at 4.85 A (face 
short diagonals); the DSM experimental pair distances are rather 4.5 A and 4.99 A, 
respectively. It is easy to realise that contracting some pair distances and expanding 
others simultaneously cannot be obtained by simple reshaping of the A3,,,, volumes. If 
size and/or shape are modified in such a way that the A3,,,, keep being entirely contained 
in the three-dimensional ( perp) space, complementary to the physical space, the existing 
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Figure 9. Calculated intensities compared with integrated intensities of neutron diffraction 
peaks measured in quasi-crystalline alloys: (a)  A174Sis (FeCr)zl (bT = +0.658 X cm; 
similar to x-ray contrast with A174SisMnz,); ( b )  AI,,SiSMnz, (bT = -0.373 X cm). The 
calculated intensities have been obtained within the spherical approximation with or without 
parallel components as explained in the text. In (a)  the measured and calculated intensities 
compare reasonably well and are not very sensitive to the parallel component. In ( b )  the 
agreement is poorer but improves when parallel components are introduced. 
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Figure 10. Partial pair distribution functions of the icosahedral A174Si5Mn,, phase directly 
measured by the DSM and calculated within the spherical approximation as explained in text. 
The agreementbetweendataandsimulationisobviouslyimprovedby the parallel component 
effect which reduces, in particular, the spurious splitting of the pair distances around 2.5- 
2.8 A. The actual pair distributions, as shown in figure 11, have been given an artificial 
Gaussian broadening to simulate both resolution and Debye-Waller effects. The Mn-Mn 
correlations are poorly determined experimentally and they are not shown here for reasons 
explained in the text. 

pair distances do not change except that some of them may disappear while new ones are 
created. The only way to produce expansion-contraction modifications in the structure is 
to give the ‘A3perp’ a certain amount of features, in the physical space, that will be called 
paralleE components hereafter. Basically, such parallel components are not going to 
induce atomic disorder as long as the icosahedral symmetry is still respected. The 
diffraction peaks will remain sharp (Bragg like) and diffuse scattering will not be 
produced. One simple example, again using a two-dimensional-one-dimensional 
relation, is shown in figure 12, reproducing part figure l(a). The initial Aperp are straight 
segments and a convenient cut of the two-dimensional structure by a physical one- 
dimensional space generates a Fibonacci sequence of two L and S distances. Shifting 
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Figure 11. Actual pair distributions in the AI-AI correlations, without broadening, calculated 
as for simulations in figure 10. (a) The three components of the resolved 'doublet' around 
2.8 8, transform into ( b )  a regular unresolved distribution of eight distances upon intro- 
duction of parallel components into the A3,, volumes. 

t 

Figure 12. A simple illustration of how the one- 
dimensional Fibonacci sequence is affected by a 
parallel component 6 of the A,,, segment. The 
short distances increase by 26, some long dis- 
tances are reduced by 26 and some other long 
distances are kept as such. The one-dimensional 
quasi-periodic structure is not a Fibonacci seq- 
uence any longer ( x).  Only one A,,, has been 
modified for clarity. 

TR volume 

S A  volumes 

Figure 13. Schematic representation of the 
TR volume (triacontahedron) decorating 
the Mn sites in the six-dimensional struc- 
ture. This is a two-dimensional cut of TR 
in complementary space, showing four of 
the 12sA volumes that are going to be 
given a parallel component 112,281. 

antisymmetrically the two halves of the A,,,? segments by a 6 displacement entirely 
contained in the physical (par) space results in the expansion of the S distances up to 
S' = S + 26 and the contraction of some L distances down to L' = L - 26. The former 
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Fibonacci sequence LSLSLLSLLSLSL. . , becomes L'S'L'S'LL'S'L'LS'L'S' . . . , 
which is another perfectly ordered sequence of three distances L ,  L' and S ' .  Many other 
modified structures can be generated if only small various parts of the Aperp segments 
are moved antisymmetrically. 

To illustrate the point further in the periodic six-dimensional-quasi-periodic three- 
dimensional structure, an example will be given using ingredients taken from the model 
in [12]. In this model, the A3,,,, volumes attached to Mn and A1 atomic sites are 
generated using three elements: 

(i) a triacontahedron TR, whose centre-to-vertex distance along a fivefold axis is 
7.44 8, (if a = 6.5 8, in six-dimensions); the three-dimensional physical cut of TR gives 
a 3DPT 

(ii) a volume called A obtained by intersecting a z-inflated TR with a regular dode- 
cahedron of fivefold radius equal to 9.74 8, (=az3 /2 f i ) ;  

(iii) a volume SA which is a z3-deflated A volume and has a radius equal to 2.3 A; 
SA is almost spherical. 

As stated, the three-dimensional cut structure is a perfect ~DFT if TR is taken as an 
A3,,, volume attached to the origin sites of a six-dimensional primitive cubic lattice. 
Vertices of the ~ D P T  are arranged in icosahedra. It has been demonstrated [12,27] that 
the centres of these icosahedra result from the three-dimensional physical cuts of an SA 
volume at the central core of TR. Simultaneously, the 12 vertices of these icosahedra 
are generated by the physical cuts of 12 sAvolumes which are translated from the central 
SA by vectors equivalent to [a/q2(2 + z)](z, 1, O)perp. This situation is illustrated in 
figure 13. In the three-dimensional structure, centre-to-vertex distances are then defined 
by vectors equivalent to (1, t, O)par and are equal to 4.62 A (edges of the ~ D P T ) .  If the 
A3,,,, volume is modified (different shape, different volume, holes here and there, etc) 
in such way that it remains confined inside the complementary space, these distances 
will be kept unchanged; the only consequences may be the appearance of new (shorter) 
distances and the disappearance of a fraction of the pre-existing distances. Let us take 
now the 12 small SA volumes, as defined above, whose centres have coordinates in six- 
dimensional space given by vectors equivalent to (z, 1, O)perp + (1, z, O)par; without 
modifying the rest of TR, the 12 SA spots can be shifted, into the physical space, to 
position (z, 1, O),,, + (1, z, O)par + ( ~ ( 1 ,  z, O)par [28]. The obvious effect of the extra 
parallel component (U( 1, z, 0) is to expand ( a  > 0) or to contract ( a  < 0) the icosahedron 
size, but the icosahedral symmetry is not altered and the three-dimensional generated 
structure is still quasi-periodic. In this example, the parallel component modifies about 
60% of the initial structure, which means that 60% of the atomic sites are shifted with 
respect to the 3DPT vertices, to an extent depending on the magnitude of the chosen 
parallel component. How should it affect the diffraction data? The structure factor of 
the initial structure is proportional to GO(Qperp), the FT of the TR volume. Shifting the 
12 small SA volumes from r6(k) to r6(k)  + Grpar(k) modifies this structure factor by 

12 

A = Z Gk(Qperp) exP[iQ6 ' r~j(k)I[l - exP(iQpar * 6rpar)I 
k = l  

in which Gk(Q,,,,) is the FT of a small volume SA. Because of size differences between 
SA and TR, the maximum value of Gk(QPerp) is about 30 times smaller than that of 
Go(Q,,,); Gk is also weakly variable in the e,,,,-range which shows that Go decreases 
to zero. The signs of A will depend on Q6. Thus, introducing parallel components into 
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Figure 14. The G(Q,,,)-functions, u s  of the A3,,,, volume, corresponding to a simple 
spherical profile (0) or showing effects due to parallelcomponents (+) for 12 smaller spheres 
displaced along the physical fivefold axes by (a) 0.1 8, or (b )  0.5 A. 

the ‘A3perp’ volumes should have an effect mainly upon small-intensitydiffraction peaks 
(large Qperp) and will also remove isotropy degeneracies. This conclusion is illustrated 
in figure 14, showing the G(Qperp) function for two different parallelcomponents, namely 
-0.1 and -0.5 A. The largest value, certainly unrealistically too large, is visible on a 
pertinent two-dimensional map of the simulated six-dimensional structure (figure 15). 
Realistic parallel components might have more tiny effects on diffraction data, which are 
even less visible on the deduced six-dimensional structure owing to smearing truncation 
effects of the IT procedure and background cut-off. This is probably the strongest 
advocacy for a necessary touch of modelling to go beyond structural features directly 
obtained from data, even if a careful examination allows us, after all, to ‘see’ exper- 
imental parallel components (figure 15) which seems to follow the trend observed in the 
simulated structure. 

In an attempt to test further the assumption of such parallel components, the simplis- 
tic model as described in section 4 has been modified accordingly. The A3,,,,(T) sphere 
related to the manganese sites at the origin has been given a parallel com, anent for the 
12 fivefold small spheres of volume SA as explained previously in this section. The 
A3pe1P(A1,) empty spherical shell attached to the aluminium sites at the origin has been 
modified similarly by shifting 30 small spheres of volume SA along the twofold axes in 
the three-dimensional physical space. The parallel components have been considered 
as adjustable parameters in an attempt to fit the neutron diffraction data. Such a 



Quasi-crystal structure 2515 

Figure 15. FTS of the partial structure factor FMn: (a) calculated with an A3,,,volume based 
on a sphere with 12 smaller spheres shifted along parallel fivefold axes [28]; (b)  deduced 
from diffraction data. The maps are two-dimensional cuts of the six-dimensional structures 
containing fivefold axes (one physical fivefold axis and one complementary fivefold axis). 
The simulated density map corresponds to the FT of a set of calculated F,,, within the 
spherical approximation as explained in the text and exactly equivalent to the measured 
set of values (same reflections); consequently, truncation effects are expected to spoil 
experimental and simulated densities to comparable extents. 

procedure, as suggested in [28], is somewhat equivalent to the atomic position fitting of 
classical crystallography. The best fit, as pictured in figure 9, is obtained for 6qAs(Mn) = 
+0.14 8, and 6r1lA2(Alo) = -0.25 8, which means that, with respect to the initial ~ D F T ,  
the Mn icosahedron radius has been expanded from 4.6 to 4.74 8, while the external A1 
icosadodecahedron radius has been contracted from 4.83 to 4.58 8,. Comparing the 
results shown in figure 9 illustrates an obvious improvement in reproducing diffracted 
intensities (the x 2 -  and R-factors have been reduced by a factor of about 2) even if some 
of the diffraction peaks are still far from being correctly interpreted. An example is the 
peak corresponding to N ,  M = 66,105 which should strongly constrain any model by its 
unexpected absence in the set of measured intensities. The calculated PPDFS are of course 
also sensitive to the presence of parallel components in the A3,,,, volume. The curves 
displayed in figure 10 show the good trends of the attempt. The A1-A1 and AI-Mn 
partials are now quite nicely reproduced. (The Mn-Mn pairs, as reported, are more 
poorly determined and have not been used here to support any model although showing 
the same trend as the A1-A1 and A1-Mn pairs.) Again spurious short distances show up, 
but there is no point in bothering too much about it as long as we know that they are due 
to the spherical approximation of the A3,,,, volumes. However, it is fair to point out 
that these spurious short distances may have a dramatic effect if the model is to be 
used for the prediction of physical properties. One can reasonably anticipate a final 
satisfactory description of the structure when non-spherical A3,,, volumes, with per- 
tinent parallel components as described in this section, are used. This approach, which 
is very simple in principle but quite tedious in practice, is in progress. It is already clear 
that the problem is of the multiple-parameter type. Physical constraints must be injected 



2516 M de Boissieu et a1 

into the determination of the ‘A3perp’ parallel components which, otherwise, are not 
unique. 

The main effect of the parallel component is, as explained in this section, contraction- 
expansion of the successive icosahedral atomic shells, or fragments of them, with respect 
to those expected from a 3DPT. This is illustrated in figure 11 for the particular case of 
the Al-A1 correlations. Thus, even if the 3DPT remains a good framework for the 
description of the average structure, the rhombohedral tiles are distorted enough to 
suggest a better picture of the actual structure in terms of statistical clusters, also 
derivable from a six-dimensional cut scheme. One might be also tempted to introduce 
the notion of ‘modulated 3DPT’. It should be noted that these parallel parts of the A3,qrp 
volumes are reminiscent of the commensurate displacive modulations, as introduced in 
[14] in order to stabilise ~ D P T  structures. Such displacive modulations have actually been 
observed when simulating structure relaxation [14] or growth process [29,30] for two- 
dimensional quasi-crystals. Chemical modulations related to phason disorder can also 
be generated in a similar way by substituting a small fraction of a given A3,,, with the 
same volume taken from another A3,,,, (for instance A1 e Mn substitution). In [31,32] 
it was also previously mentioned that detailed structures of quasi-crystals might be 
difficult to specify completely, owing to complicated shapes of the A3,,,, volumes 
including components in the physical space. It is fair to point out that somewhat successful 
attempts have been made to keep some kind of 3DPT description [8], but this is at the 
cost of using z3-inflated decorations with probably little benefit with respect to what 
would be a large unit-cell periodic structure approach. As explained also in this section, 
the parallel components do not induce any atomic disorder, as long as they are kept 
constant in six-dimensional space. The wavy background which shows up in the baseline 
of some of the diffraction patterns must have a different origin and is indeed the signature 
of true disorder. In that respect, space fluctuations of the parallel components might 
contribute to this disorder which, by the way, is taken into account, whatever the 
outcome, in the DSM approach. 

6. Conclusion 

The six-dimensional crystallography scheme is definitely a valuable tool for deriving the 
basic features of icosahedral quasi-crystals. For the simple systems and with the use of 
contrast variation effects, average structures are obtained which can be refined through 
a necessary last-step modelling for comparison with partial pair distribution functions 
and integrated diffracted intensities. Differences, with respect to this average structure, 
can be interpreted in terms of parallel components of the A3,,,, volume. This makes the 
description of the quasi-crystal structure on a ~ D P T  basis less realistic than suggested 
earlier. Qualitatively, the same kinds of icosahedral atomic shell are still present in the 
structure, including for instance fragments of the famous MIS [ l l ] ,  but they are rather 
strongly deformed. Connected statistical clusters are probably the best alternative way 
to specify quasi-crystal structure. 
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